In worldwide literature HPV infections in men have not received much attention. Perhaps because HPV infections do not have as serious consequences for men as they have for women. But the high prevalence pointing it as the most disseminated viral sexually transmitted disease and the confirmation of the HPV as the etiological agent of cervical cancer, increased the interest in male HPV infections, among which the majority of cases are subclinical and remain invisible to naked eye. These conditions permit HPV to spread silently. In fact, several studies have attempted to demonstrate that even in the absence of clinical lesions the male urethra is a reservoir for HPV with prevalence of HPV detection ranging from 17% to 50%

Epidemiological data show that nearly 50% of sexually active women and men between the 15th and 49th year of age present infections with at least one, sometimes several genital HPV types.

INTRODUCTION

In worldwide literature HPV infections in men have not received much attention. Perhaps because HPV infections do not have as serious consequences for men as they have for women\. But the high prevalence pointing it as the most disseminated viral sexually transmitted disease and the confirmation of the HPV as the etiological agent of cervical cancer, increased the interest in male HPV infections, among which the majority of cases are subclinical and remain invisible to naked eye. These conditions permit HPV to spread silently. In fact, several studies have attempted to demonstrate that even in the absence of clinical lesions the male urethra is a reservoir for HPV with prevalence of HPV detection ranging from 17% to 50%.

Epidemiological data show that nearly 50% of sexually active women and men between the 15th and 49th year of age present infections with at least one, sometimes several genital HPV types.

In men, productive HPV infection can result in simple condyloma acuminate, giant condyloma, or Buschke-Löwenstein...
tumor, mainly caused by HPV genotypes 6 and 11. But visible genital warts are, however, detectable only in about 1% of this population, representing only the top of the HPV iceberg. HPV-associated penis intraepithelial neoplasia represent the great majority of the cases but are inconspicuous lesions caused by high-risk HPV types, specially HPV 16 and 18, showing histologically low, moderate, or severe dysplasia (PIN grades 1, 2 and 3). Less frequently, high-risk HPV infection can progress to penile carcinoma, also associated to HPV 16 and 18 in 30 to 50% of the cases.

Penile cancer is a rare tumor and has high incidence in older men. It is typically a disease of middle-aged to older men, most commonly affecting those between 50 and 70 years of age. The prevalence of penile carcinoma has geographically heterogenic distribution ranging from 15% to 71%, depending on the detection method and the tumor type studied. In Europe and USA it is an uncommon disease, with an annual incidence of 0.3-1.5 per 100,000 inhabitants. That represents 0.3-0.5% of all malignancies in the male population of the USA. In developing countries of Africa, South America and of the Far East, however, the incidence is much higher than in Europe and the USA, reaching 10-22% of all male malignancies. In Brazil, it represents 2% of all male cancer, and is present more frequently in regions North and Northeast (5.5% at 16%) and 1% at 4% in South Northeast regions. Epidemiological evidences suggest that presence of HPV infection, phimosis, poor genital hygiene, earlier age at first sexual intercourse, a history of multiple sexual partners, chronic inflammation, smoking, and other STIs are risk factors for penile cancer.

Studies revealed that man can be regarded as the epidemiological source of female infection and that HPV-associated lesions are detected in 50% to 70% of male partners of infected women. Partners of men having penile cancer showed cervical cancer incidence eight times higher risk of developing penile cancer, and when both partners have HPV DNA, the incidence of the same virus group is small, but is larger in the group of women having CIN. These data can explain the vicious circle of infection and recurrence in female and in failure in treatment, due to reinfection by male partners presenting subclinical HPV lesions.

There is no specific antiviral compound available so far that is able to eliminate HPV completely. Medical therapies for HPV including: Podophyllin treatment, Trichloroacetic acid, Imiquimod, Interferon, and other substances. The treatment of oncogenic HPV associated intraepithelial and invasive squamous cell neoplasias should be primarily surgical (laser, electrocauter) and accurate detection of the broad range of pathogenic HPV types infecting the genital tract. Recently developed, the second generation of Hybrid Capture System HPV DNA detection test from Digene Diagnostics (Silver Spring, Md.) is a non-radioactive, relatively rapid, liquid hybridization assay designed to detect 18 HPV types divided into high-risk and low-risk groups. HPV DNA test might be an useful tool to indicate potential premalignant lesions in male patients as well as to elucidate inconclusive cases obtained by peniscopy. It is also necessary to consider the importance of detecting subclinical HPV lesions, since men are the principal epidemiological source of HPV infection for the female genital tract, where the HPV exerts their potential of malignant transformation most efficiently.

Hence, the aim of our study was to investigate the prevalence of HPV infection in male genital tract in order to determine the prevalence of high-risk oncogenic infections by hybrid capture assay to obtain subsides to understand male infection importance for female infection and to help preventing oncogenic infections to become malignant processes. For this we proceeded to a survey of the penile samples from male patients attended at Laboratório Sérgio Franco, Rio de Janeiro, Brazil.

METHODS

Specimens: 1063 penile samples of male patients with ages between 16–96 years, attended at Laboratório Sérgio Franco, Rio de Janeiro, Brasil, in 2001 and 2002. The samples were collected and transported in Digene Specimen Transport Medium (Digene Diag, Md).

Hybrid Capture Assay: The assay kit used was the Digene Hybrid Capture II HPV Test (Microplate System). The kit contains two pools of probes with the more commonly types in each risk-group to develop cancer: Pool A with low-risk types (HPV 6, 11, 42, 43 and 44) and Pool B with high-risk types (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68). According to the kit protocol, specimens were treated with sodium hydroxid to hydrolyze specimen RNA and denature the DNA. The liberated single strand DNA was hybridized in solution with a RNA probe mix consisting of the high-risk or the low-risk HPV types. Each
reaction mixture, containing any RNA-DNA hybrids that formed, was transferred to a capture tube coated with antibodies to the hybrids, immobilizing them. Bound RNA-DNA hybrids were then reacted with an alkaline phosphatase-conjugated antibody directed against the hybrids. Unreacted material was removed by washing, and a dioxetane-based chemiluminescent compound, Lumi-Phos 530, was added as a substrate for alkaline phosphatase. The light produced by ensuing reaction was measured by a Luminometer. Light measurements were expressed as relative light units (RLUs). As a negative control, sonicated herring sperm DNA in Digene transporting medium (100g/ml) was used. Triplicate specimens of HPV 16 or HPV 11 DNA at 10pg/ served as the positive controls for high-risk and low-risk probes, respectively.

In the final of the process the light produced by the reaction was measured in a Luminometer. And these measurements were expressed as relative light units (RLUs). Had been used controls negatives and positives (for high-risk and low-risk probes) in triplicate. All RLU measurements for specimens were divided by the mean RLU of the three appropriate positive controls (PCs) to give a ratio of specimen RLU/PC. A ratio of 1.0 or greater was regarded as positive for HPV DNA, and a ratio of less than 1.0 was regarded as negative.

RESULTS

Our study analyzed 1063 samples from male patients with ages varying between 16 and 96 years. The medium age of the participants was 30 years. Among this samples 281 patients were positive to HPV by Hybrid Capture Assay, and 782 were negative to HPV. That represented 26.4% of the patients infected by some HPV type. In positive samples 108 were of high-risk group (Group B), 97 of low-risk group (Group A), and 76 were positive for both groups. In the positive cases 184 (65.5%) patients were infected by oncogenic HPV, including simple infections (Positive B) and mixed infections (Positive A and B) (Table 1).

The graphic 1 shows the correlation between positive and negative HCA II and the distribution for the age bands. We can observe in this graphic that patients with age between 20 to the 30 years had the greater prevalence of HPV infection, and a reduction on the numbers cases occurs according to the increase of the patient’s age.

DISCUSSION

The results showed 26.4% patients infected by HPV, with the highest prevalence among young men. Of these, more than 65% men were infected with oncogenic HPV types. Rosenblatt obtained 16.7% de DNA HPV in men, among which 46.7% were low-risk and 53.3% were high-risk. These results might indicate a higher risk of cancer progression and in fact Brazil presented a higher incidence of genital cancer.

The band of major prevalence of HPV infection was the 20-30 years of age. This band of age coincided with the summit sexual activity of men. The decrease of the rate of infection observed in the increase of the age can be explained for the reduction of sexual activity and, probably, they were persistent infections.

The analysis of male samples showed HPV profile of infection not much similar to obtained in a survey of female cases conducted in the year of 2001. The number of HPV positive cases in male study is smaller than the female study, with a higher number of infections caused by low-risk HPV types in men compared to

<table>
<thead>
<tr>
<th>Hybrid Capture HCA II</th>
<th>Group A</th>
<th>Group B</th>
<th>Group A + b</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF PATIENTS</td>
<td>97</td>
<td>108</td>
<td>76</td>
<td>281</td>
</tr>
<tr>
<td>(%)</td>
<td>34,5%</td>
<td>38,4%</td>
<td>27,1%</td>
<td>26.4%</td>
</tr>
</tbody>
</table>

Table 1 - Results from Hybrid Capture Assay in penile lesions

Graphic 1 - Distribution of HCA II results according to the age bands of male patients

women. Primarily, the reduced number of infected male patients in relation to the female patients can be explained by the different kind of epithelial tissue that covered the penis and the uterine cervix. The penile shaft and the outer surface of the foreskin are covered by a keratinized stratified squamous epithelium that provides a natural protective barrier against HPV infection. Besides that, in woman, the epithelium is non-keratinized in most part of the cervix, where is the squamous-columnar junction, called the transformation zone, which exposes the epithelium to HPV infection. One explanation for the frequent infections of low-risk types in men is the different cell tropism characteristic in HPV types, associated to site specific restrictions.

It is necessary to emphasize that the two groups came from the same geographical region and attended at the same period at the same Laboratory. Hence, we assume that they are very similar populations sharing socio-economic conditions and customs. We question if the male cases are intimate related to female infection, being the reservoir for their partners and turning difficult to control these Sexually Transmitted Disease Epidemics.

In fact, Neves and colleagues studied proposed that HPV infection and natural history conducting to penile cancer is a multi-factorial process similar to cervical squamous cell carcinoma. Fernandes also showed important parallels to vulvar and cervical cancer with penile cancer. And still, the studies from Rubin, Gross & Pfister, found a prevalence of HPV-DNA in penile carcinoma about 40–45%, which is similar to the detection rate of HPV-DNA in vulvar carcinoma (50%), with the histological subtypes of penile neoplasia identical to those described at the vulva.

There are extensive evidence reinforcing the use of a HPV DNA detection test, such as the HCA, because that HPV types are not isolated from “benign” HPV-associated genital lesions more than is usually expected. These oncogenic infected benign lesions may represent a risk for the female population, exposed to high-risk viruses, presenting a benign profile of infection in their sexual partners. These variations in virological data have implications in vaccine testing, choice of diagnostic methods, and epidemiological studies involving disease control.

CONCLUSION

Finally, taking into consideration these aspects above cited, we consider that HPV detecting and typing of male genital HPV lesions are an important part of the diagnostic procedure, treatment, and follow-up of patients and also for cervical and penile cancer prevention strategies.

REFERENCES

18. Segi M. Graphic presentation of cancer incidence by site and by area and population. Segi Institute for Cancer Epidemiology Nagoya; 1997.

Correspondence:

SILVIA MARIA BAETA CAVALCANTI
Lab. Virologia - Depto de Microbiologia e Parassitologia - Instituto Biomédico- UFF
E-mail : silviabc@isim.com.br

Recebido em: 20/02/05
Aprovado em: 18/03/05